امید8

قضیه فیثاغورس

اثبات با استفاده از مثلث‌های متشابه

 
اثبات با استفاده از مثلث‌های متشابه

این اثبات بر اساس نسبت تناسب میان دو مثلث متشابه بیان شده‌است. به این معنی که اگر دو مثلث متشابه داشته باشیم، نسبتطول‌های هر دو ضلع متشابه میان دو مثلث ثابت است.

همان گونه که در شکل نشان داده شده‌است، فرض کنید ABC مثلثی راست‌گوشه‌است و C زاویه‌ای راست (۹۰ درجه) است. حال ارتفاع مثلث را از گوشهٔ C بر وتر AB رسم می‌کنیم و نقطهٔ برخورد را H می‌نامیم. نقطهٔ H وتر را به دو بخش d و e تقسیم می‌کند.

مثلث جدید ACH و مثلث ABC با یکدیگر متشابه‌اند. چون هر دو یک زاویهٔ ۹۰ درجه دارند (طبق تعریف ارتفاع مثلث) و زاویهٔ A در هر دو مشترک است؛ از این می‌توان نتیجه گرفت که زاویهٔ سوم θ در هر دو یکسان است (در شکل نشان داده شده‌است). به دلیل مشابه مثلث CBH نیز با مثلث ABC متشابه‌است. به دلیل تشابه مثلث‌ها، روابط زیر برقرار خواهد بود:

 \frac{a}{c}=\frac{e}{a} \mbox{ and } \frac{b}{c}=\frac{d}{b}

عبارت سمت چپ، برابر است با کسینوس زاویهٔ θ و سمت راست برابر است با سینوس زاویهٔ θ.

این نسبت‌ها را به صورت زیر نیز می‌توان نوشت:

a^2=c\times e و  b^2=c\times d

اگر دو تساوی را با یکدیگر جمع کنیم، خواهیم داشت:

a^2+b^2=c\times e+c\times d=c\times(d+e)=c^2

که همان تساوی قضیهٔ فیثاغورس خواهد بود:

a^2+b^2=c^2

روش گفته شده اثبات دانتزیگ، Dantzig بود که یک روش ریاضی بود و بر اساس طول‌ها. این اثبات در تاریخ علم، نقشی قابل توجه داشته‌است. اما سوالی که اینجا مطرح است این است که چرا اقلیدوس از این روش استفاده نکرده و برای اثبات آن روش دیگری را از خود گفته‌است. یک گمان این است که اثبات با استفاده از مثلث‌های متشابه نیاز به دانستن تئوری تناسب‌ها داشته که تا آن زمان هنوز مورد بحث قرار نگرفته بود

اثبات جبری قضیه فیثاغورس

قضیهٔ فیثاغورس را می‌توان با استفاده از چیدن چهار مثلث راست‌گوشهٔ یکسان با ضلع‌های a و b و c درون یک مربع با ضلع c به صورت جبری اثبات کرد.مثلثها یکسانند و مساحتی برابر با \tfrac12ab دارند. مربع کوچک ضلعی برابر با b − a و مساحتی برابر با ۲ (b − a) به این ترتیب مساحت مربع بزرگ برابر خواهد بود با:

(b-a)^2+4\frac{ab}{2} = (b-a)^2+2ab = a^2+b^2

و چون این مربع ضلعی برابر با c دارد پس مساحتی برابر با ۲ c خواهد داشت، می‌توان نتیجه گرفت:

c^2 = a^2 + b^2

همان گونه که در پایین نگاره می‌توان دید، اثبات مشابه دیگری وجود دارد که در آن با استفاده از بازچینی چهار مربع یکسان به دور مربعی به ضلع c به نتیجه می‌رسد.[۱۲] با این کار مربع بزرگتری به ضلع (a+b) و در نتیجه با مساحت ۲ (a+b) تشکیل می‌شود. چهار مثلث و مربع با ضلع c مساحتی برابر با مساحت مربع بزرگتر دارد.

(b+a)^2 = c^2 + 4\frac{ab}{2} = c^2+2ab

با جابجایی عبارت پشت تساوی خواهیم داشت:

c^2 = (b+a)^2 - 2ab = a^2 + b^2

اثبات دیگری برای این قضیه ارائه شده‌است که آن را به جیمز آبرام گارفیلد نسبت می‌دهند.در این اثبات بجای مربع از یک ذوزنقه استفاده می‌شود. بخشی از این ذوزنقه از دو نیم کردن (به صورت قطری) مربعی که در اثبات دوم در بالا گفته شد تشکیل شده‌است. مساحت ذوزنقه برابر با نصف مساحت آن مربع است:

 
نگارهٔ مربوط به اثباتگارفیلد
\frac{1}{2}(b+a)^2

مربع داخلی نیز دو نیم شده‌است، ادامهٔ اثبات به همان روش مشابه‌است با این تفاوت که عامل \frac{1}{2} را اضافه‌تر دارد؛ که با دو برابر کردن کل عبارت به آسانی حذف می‌شود.


برچسب‌ها: فیثاغورس
+ نوشته شده در  پنجشنبه هفدهم دی ۱۳۹۴ساعت 9:46  توسط Ali Goodarzi  |